Войти
Проект-Технарь
Устройство авто.
Данный раздел посвещён вопросам устройства и экстплуатации авто
Здесь Вы сможете найти статьи по устройству, ремонту,
обсуживанию, также деталям и узлам авто.
Также можно найти классификацию нетрадиционных ДВС, их устройство и работу.
Наши контакты:
+7(903) 982 12 16, admin@studiplom.ru
Меню


Система скидок

Автоматическая коробка передач, коробка автомат

Улучшение эксплуатационных качеств современного автомобиля привело к значительному усложнению его конструкции. А оснащение автомобилей автоматической трансмиссией позволило резко снизить объем нагрузки, возлагаемой на водителя во время движения, что также благоприятно отразилось на ходовой части, двигателе и скоростных качествах автомобиля. Надежность и простота эксплуатации определили дальнейшее широкое использование этого изобретения. В настоящее время автоматические трансмиссии применяются и на легковых, и на полноприводных автомобилях, и даже на грузовом транспорте. При использовании транспортного средства с ручным управлением, для поддержания необходимой скорости, водителю необходимо часто пользоваться рычагом переключения передач. 

Автоматическая коробка передач (также автоматическая трансмиссияАКП) — разновидность коробки передач автомобилей, обеспечивающая автоматический (без прямого участия водителя) выбор соответствующей текущим условиям движения ступени (передачи).

От механической коробки перемены передач (МКПП) отличается автоматическим переключением передач, а также, в большинстве случаев, иным принципом действия механической части — а именно, использованием планетарных механизмов и гидромеханического привода вместо чисто механического в традиционной КП.

В последние десятилетия, наряду с классическими гидромеханическими автоматическими трансмиссиями предлагаются и различные варианты автоматизированных («роботизированных») механических коробок передач с электромеханическим управлением (однако на современном уровне массовых технологий большинство образцов таких трансмиссий можно приравнять по потребительским свойствам к традиционным АКП лишь отчасти).

Гидротрансформатор

Гидротрансформатор (ГДТ) (torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач (АКПП) и состоит из следующих основных частей:

Для иллюстрации принципа действия гидротрансформатора как элемента, передающего крутящий момент, воспользуемся примером с двумя вентиляторами. Один вентилятор (насос) включён в сеть и создаёт поток воздуха. Второй вентилятор (турбина) - выключен, однако, его лопатки, воспринимая поток воздуха, создаваемого насосом, вращаются. Скорость вращения турбины меньше, чем у насоса, она как бы проскальзывает по отношению к насосу. Если применить этот пример по отношению к гидротрансформатора, то в нём в качестве вентилятора, включённого в сеть (насоса), выступает крыльчатка насосного колеса.

Гидротрансформатор

 

Насосное колесо механически связано с двигателем внутреннего сгорания. В качестве выключенного вентилятора (турбины) выступает турбинное колесо, соединённое через шлицы с валом АКПП. Подобно вентилятору - насосу, крыльчатка насосного колеса гидротрансформатора, вращаясь, создаёт поток, только уже не воздуха, а жидкости (масла). Поток масла, как и в случае с вентилятором - турбиной, заставляет вращаться турбинное колесо гидротрансформатора. В данном случае гидротрансформатор работает как обыкновенная гидромуфта, лишь передавая посредством жидкости крутящий момент от двигателя на вал АКПП, не увеличивая его. Увеличение оборотов двигателя не приводит к сколь - ни будь существенному увеличению передаваемого крутящего момента. 

Снова возвратимся к иллюстрации с вентиляторами. Поток воздуха, крутящий лопатки вентилятора - турбины, рассеивается впустую в пространстве. Если же этот поток, сохраняющий значительную остаточную энергию, направить снова к вентилятору - насосу, он начнёт вращаться быстрее, создавая более мощный поток воздуха, направленный к вентилятору - турбине. Тот, соответственно, тоже начнёт вращаться быстрее. Это явление известно как преобразование (увеличение) крутящего момента. 

В гидротрансформаторе в процесс преобразования крутящего момента помимо насосного и турбинного колёс включён статор, который изменяет направление потока жидкости. Подобно воздуху, вращавшему лопатки вентилятора - турбины, поток жидкости (масла), вращавший турбинное колесо ГТ, всё ещё обладает значительной остаточной энергией. Статор направляет этот поток обратно на крыльчатку насосного колеса, заставляя её вращаться быстрее, увеличивая тем самым крутящий момент. Чем меньше скорость вращения турбинного колеса гидротрансформатора по отношению к скорости вращения насосного колеса, тем большей остаточной энергией обладает масло, возвращаемое статором на насос, и тем большим будет момент, создаваемый в гидротрансформаторе.

Турбина всегда имеет скорость вращения меньшую, чем насос. Это соотношение скоростей вращения турбины и насоса максимально при неподвижном автомобиле и уменьшается с увеличением его скорости. Поскольку статор связан с гидротрансформатором через обгонную муфту, которая может вращаться только в одном направлении, то, благодаря особой форме лопаток статора и турбины поток масла направляется на обратную сторону лопаток статора, благодаря чему статор заклинивается и остаётся неподвижным, передавая на вход насоса максимальное количество остаточной энергии масла, сохранившееся после вращения им турбины. Такой режим работы гидротрансформатора обеспечивает максимальную передачу им крутящего момента. Например, при трогании с места гидротрансформатор увеличивает крутящий момент почти в три раза. 

По мере разгона автомобиля проскальзывание турбины относительно насоса уменьшается и наступает момент, когда поток масла подхватывает колесо статора и начинает вращать его в сторону свободного хода обгонной муфты. Гидротрансформатор перестаёт увеличивать крутящий момент и переходит в режим обычной гидромуфты. В таком режиме гидротрансформатор имеет КПД, не превышающий 85%, что приводит к выделению в нём излишнего тепла и, в конечном счёте, увеличению расхода топлива двигателем автомобиля.

Для устранения этого недостатка используется блокировочная плита. Она механически связана с турбиной, однако, может перемещаться влево и вправо. Для её смещения влево поток масла, питающий гидротрансформатор, подаётся в пространство между плитой и корпусом гидротрансформатора, обеспечивая их механическую развязку, то есть, плита в таком положении никак не влияет на работу гидротрансформатора. 

При достижении автомобилем высокой скорости по особой команде от устройства управления АКПП поток масла изменяется так, что он прижимает блокировочную плиту вправо к корпусу гидротрансформатора. Для увеличения силы сцепления на внутреннюю сторону корпуса наносится фрикционный слой. Происходит механическая блокировка насоса и турбины посредством плиты. Гидротрансформатор перестаёт выполнять свои функции. Двигатель жёстко связывается с входным валом АКПП. Естественно, при малейшем торможении автомобиля блокировка немедленно выключается.
Для устранения этого недостатка используется блокировочная плита. Она механически связана с турбиной, однако, может перемещаться влево и вправо. Для её смещения влево поток масла, питающий гидротрансформатор, подаётся в пространство между плитой и корпусом гидротрансформатора, обеспечивая их механическую развязку, то есть, плита в таком положении никак не влияет на работу гидротрансформатора. 

При достижении автомобилем высокой скорости по особой команде от устройства управления АКПП поток масла изменяется так, что он прижимает блокировочную плиту вправо к корпусу гидротрансформатора. Для увеличения силы сцепления на внутреннюю сторону корпуса наносится фрикционный слой. Происходит механическая блокировка насоса и турбины посредством плиты. Гидротрансформатор перестаёт выполнять свои функции. Двигатель жёстко связывается с входным валом АКПП. Естественно, при малейшем торможении автомобиля блокировка немедленно выключается.
Существуют и другие способы блокировки гидротрансформаторов, однако, суть всех способов одна - исключить проскальзывание турбины относительно насоса. В зарубежных источниках такой режим работы гидротрансформатора называется Lock - up (лок - ап). 

Корпус гидротрансформатора выполняет ещё одну очень важную функцию. С его помощью осуществляется привод масляного насоса АКПП. Для этого используется дополнительный валик, размещённый внутри вала турбины. С корпусом гидротрансформатора этот валик связан шлицевым соединением. Во многих АКПП масляный насос вращается непосредственно горловиной гидротрансформатора.

Статьи по теме:
1. Трансмиссия;
2. Механическая коробка перемены передач;
3. Краткий обзор особенностей конструкции, преимуществ и недостатков различных видов автоматических трансмиссий автомобилей;
4. Как работают автоматические коробки передач с двойным сцеплением.