Войти
Проект-Технарь
Устройство авто.
Данный раздел посвещён вопросам устройства и экстплуатации авто
Здесь Вы сможете найти статьи по устройству, ремонту,
обсуживанию, также деталям и узлам авто.
Также можно найти классификацию нетрадиционных ДВС, их устройство и работу.
Наши контакты:
+7(903) 982 12 16, admin@studiplom.ru
Меню


Система скидок

Роторно-поршневой двигатель Ванкеля

Двигатель Ванкеля

Роторно-поршневой двигатель внутреннего сгорания (РПД, двигатель Ва?нкеля), конструкция которого разработана в 1957 инженером компании NSU Вальтером Фройде (англ.), ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя.
Особенность двигателя — применение трёхгранного ротора (поршня), имеющего вид треугольника Рело, вращающегося внутри цилиндра специального профиля, поверхность которого выполнена по эпитрохоиде.

Треугольник Рело

Колесо… Окружность. Одним из свойств окружности является ее постоянная ширина. Проведем две параллельные касательные и зафиксируем расстояние между ними. Начнем вращать. Кривая (в нашем случае окружность) постоянно касается обеих прямых. Это и есть определение того, что замкнутая кривая имеет постоянную ширину.

Бывают ли кривые, отличные от окружности и имеющие постоянную ширину? ДА!

Рассмотрим правильный треугольник (с равными сторонами). На каждой стороне построим дугу окружности, радиусом равным длине стороны. Эта кривая и носит имя «треугольник Рело». Оказывается, она тоже является кривой постоянной ширины. Как и в случае окружности проведем две касательные, зафиксируем расстояние между ними и начнем их вращать. Треугольник Рело постоянно касается обеих прямых. Действительно, одна точка касания всегда расположена в одном из «углов» треугольника Рело, а другая на противоположной дуге окружности. Значит, ширина всегда равна радиусу окружностей, т.е. длине стороны изначального правильного треугольника.
В житейском смысле постоянная ширина кривой означает, что если сделать катки с таким профилем, то книжка будет катиться по ним, не шелохнувшись.

Однако колесо с таким профилем сделать нельзя, так как центр такой фигуры описывает сложную линию при качении фигуры по прямой.

На любом правильном нечетном n-угольнике можно построить кривую постоянной ширины по той же схеме, что был построен треугольник Рело. Из каждой вершины, как из центра, проводим дугу окружности на противоположной вершине стороне. В Англии монета в 20 пенсов имеет форму кривой постоянной ширины, построенной на семиугольнике.

Рассмотренные кривые не исчерпывают весь класс кривых постоянной ширины. Оказывается, среди них бывают и несимметричные кривые. Рассмотрим произвольный набор пересекающихся прямых. Рассмотрим один из секторов. Проведем дугу окружности произвольного радиуса с центром в точке пересечения прямых, определяющих этот сектор. Возьмем соседний сектор, и с центром в точке пересечения прямых, определяющих его, проведем окружность. Радиус подбирается такой, чтобы уже нарисованный кусок кривой непрерывно продолжался. Будем так делать дальше. Оказывается, при таком построении кривая замкнется и будет иметь постоянную ширину. Докажите это!

Все кривые данной постоянной шириныимеют одинаковый периметр. Окружность и треугольник Рело выделяются из всего набора кривых данной ширины своими экстремальными свойствами. Окружность ограничивает максимальную площадь, а треугольник Рело —  минимальную в классе кривых данной ширины.

Скачать видео 320×240 - 10 мб

Литература

• В.Г. Болтянский, И.М. Яглом. Выпуклые фигуры. - М.-Л.: ГТТИ. 1951. 343 с.
• Г. Радемахер, О. Теплиц. Числа и фигуры. - М.: Физматгиз. 1962. 263 с.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Схема работы

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

 

 

 

 

 

 

Анимацыя

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.
Смесеобразование, зажигание, смазка, охлаждение, запуск принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания.
Практическое применение получили двигатели с трёхгранными роторами, с отношением радиусов шестерни и зубчатого колеса: R:r = 2:3, которые устанавливают на автомобилях, лодках и т. п.

Преимущества, недостатки и их разрешение

Преимущества перед обычными бензиновыми двигателями

  1. Масса движущихся частей в РПД гораздо меньше, чем в аналогичных по мощности «нормальных» поршневых двигателях, так как в его конструкции отсутствуют коленчатый вал и шатуны.
  2. К тому же однороторный двигатель выдаёт мощность в течение трёх четвертей каждого оборота выходного вала. В отличии от одноцилиндрового поршневого двигателя, который выдаёт мощность только в течение одной четверти каждого оборота выходного вала. (современный серийный РПД с объёмом рабочей камеры 1300 см³ имеет мощность 220 л.с., а с турбокомпрессором — 350 л.с.)

За счёт отсутствия преобразования возвратно-поступательного движения во вращательное двигатель способен выдерживать бо?льшие обороты с меньшими вибрациями, по сравнению с традиционными двигателями. Роторно-поршневые двигатели обладают более высокой мощностью при небольшом объёме камеры сгорания, сама же конструкция двигателя сравнительно мала и содержит меньше деталей. Небольшие размеры улучшают управляемость, облегчают оптимальное расположение трансмиссии и позволяют сделать автомобиль более просторным для водителя и пассажиров.
Соединение ротора с выходным валом через эксцентриковый механизм, являясь характерной особенностью РПД Ванкеля, вызывает давление между трущимися поверхностями, что в сочетании с высокой температурой, приводит к дополнительному износу и нагреву двигателя.
В связи с этим возникает повышенное требование к периодической замене масла. При правильной эксплуатации периодически производится капитальный ремонт, включающий в себя замену уплотнителей. Ресурс при правильной эксплуатации достаточно велик, но не заменённое вовремя масло неизбежно приводит к необратимым последствиям, и двигатель выходит из строя.
Важной проблемой считается состояние уплотнителей. Площадь пятна контакта очень невелика, а перепад давления очень высокий. Следствием этого, неразрешимого для двигателей Ванкеля, противоречия являются высокие утечки между отдельными камерами и, как следствие, падение коэффициента полезного действия и токсичность выхлопа.
Проблема быстрого износа уплотнителей на высокой скорости вращения была разрешена применением высоколегированной стали.
При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС.
Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания — сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.
Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования — станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Современные двигатели

Инженерам фирмы Mazda удалось решить все основные проблемы РПД — токсичность выхлопа и неэкономичность. По сравнению с двигателями-предшественниками «Renesis», удалось сократить потребление масла на 50 %, бензина на 40 % и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо?льшую мощность, меньше нагревается.

Автомобили марки Mazda с буквами RE в наименовании могут использовать в качестве топлива как бензин, так и водород. Это явилось вторым витком роста внимания к РПД двигателю со стороны разработчиков. Двигатель успешно может использовать водород, так как менее чувствителен к детонации, чем обычный двигатель, использующий возвратно-поступательное движение поршня.

Автомобили с РПД потребляют от 7 до 20 литров топлива на 100 км, в зависимости от режима движения, и масла от 0,4 л до 1 л на 1000 км (для двигателей Mazda 0,4 — 0,6 л.). В настоящее время исследование этого типа двигателя активно ведёт японский автоконцерн Mazda, оснащая доработанными моделями роторных двигателей автомобили серии RX.


Информацию собрал и отредактировал Vdovin/по источнику...